Improved structural methods for nonlinear differential-algebraic equations via combinatorial relaxation

نویسندگان

چکیده

Abstract Differential-algebraic equations (DAEs) are widely used for modelling dynamical systems. In the numerical analysis of DAEs, consistent initialization and index reduction important preprocessing steps prior to integration. Existing DAE solvers commonly adopt structural methods based on combinatorial optimization. Unfortunately, fail if has a singular system Jacobian matrix. For such have been proposed modify them other DAEs which applicable, relaxation technique. modification methods, however, work only that linear or close linear. This paper presents two new nonlinear DAEs: substitution method augmentation method. Both approach applicable large class DAEs. The symbolically solves some derivatives implicit function theorem substitutes solution back into system. Instead solving equations, modifies by appending variables equations. Our implemented as MATLAB library using MuPAD, through its application practical we show our can be promising procedure in cannot handle.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Waveform Relaxation Methods of Nonlinear Integral - Differential - Algebraic Equations

WAVEFORM RELAXATION METHODS OF NONLINEAR INTEGRAL-DIFFERENTIAL-ALGEBRAIC EQUATIONS ∗1) Yao-lin Jiang (Department of Mathematical Sciences, Xi’an Jiaotong University, Xi’an 710049, China) Abstract In this paper we consider continuous-time and discrete-time waveform relaxation methods for general nonlinear integral-differential-algebraic equations. For the continuous-time case we derive the conve...

متن کامل

ABS methods for nonlinear systems of algebraic equations

 Abstract    This paper gives a survey of the theory and practice of nonlinear ABS methods including various types of generalizations and computer testing. We also show three applications to special problems, two of which are new.

متن کامل

global results on some nonlinear partial differential equations for direct and inverse problems

در این رساله به بررسی رفتار جواب های رده ای از معادلات دیفرانسیل با مشتقات جزیی در دامنه های کراندار می پردازیم . این معادلات به فرم نیم-خطی و غیر خطی برای مسایل مستقیم و معکوس مورد مطالعه قرار می گیرند . به ویژه، تاثیر شرایط مختلف فیزیکی را در مساله، نظیر وجود موانع و منابع، پراکندگی و چسبندگی در معادلات موج و گرما بررسی می کنیم و به دنبال شرایطی می گردیم که متضمن وجود سراسری یا عدم وجود سراسر...

Computer methods for ordinary differential equations and differential-algebraic equations

Spend your few moment to read a book even only few pages. Reading book is not obligation and force for everybody. When you don't want to read, you can get punishment from the publisher. Read a book becomes a choice of your different characteristics. Many people with reading habit will always be enjoyable to read, or on the contrary. For some reasons, this computer methods for ordinary different...

متن کامل

Waveform relaxation methods for implicit differential equations

We apply a Runge-Kutta-based waveform relaxation method to initial-value problems for implicit differential equations. In the implementation of such methods, a sequence of nonlinear systems has to be solved iteratively in each step of the integration process. The size of these systems increases linearly with the number of stages of the underlying Runge-Kutta method, resulting in high linear alg...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Ima Journal of Numerical Analysis

سال: 2021

ISSN: ['1464-3642', '0272-4979']

DOI: https://doi.org/10.1093/imanum/drab094